skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wechsler, Risa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Precise and accurate predictions of the halo mass function for cluster mass scales inwνCDM cosmologies are crucial for extracting robust and unbiased cosmological information from upcoming galaxy cluster surveys.Here, we present a halo mass function emulator for cluster mass scales (≳ 1013M/h) up to redshiftz= 2 with comprehensive support for the parameter space ofwνCDM cosmologies allowed by current data.Based on theAemulusνsuite of simulations, the emulator marks a significant improvement in the precision of halo mass function predictions by incorporating both massive neutrinos and non-standard dark energy equation of state models.This allows for accurate modeling of the cosmology dependence in large-scale structure and galaxy cluster studies.We show that the emulator, designed using Gaussian Process Regression, has negligible theoretical uncertainties compared to dominant sources of error in future cluster abundance studies.Our emulator is publicly available (https://github.com/DelonShen/aemulusnu_hmf), providing the community with a crucial tool for upcoming cosmological surveys such as LSST and Euclid. 
    more » « less
  2. Abstract The abundance of faint dwarf galaxies is determined by the underlying population of low-mass dark matter (DM) halos and the efficiency of galaxy formation in these systems. Here, we quantify potential galaxy formation and DM constraints from future dwarf satellite galaxy surveys. We generate satellite populations using a suite of Milky Way (MW)–mass cosmological zoom-in simulations and an empirical galaxy–halo connection model, and assess sensitivity to galaxy formation and DM signals when marginalizing over galaxy–halo connection uncertainties. We find that a survey of all satellites around one MW-mass host can constrain a galaxy formation cutoff at peak virial masses of M 50 = 10 8 M at the 1σlevel; however, a tail toward low M 50 prevents a 2σmeasurement. In this scenario, combining hosts with differing bright satellite abundances significantly reduces uncertainties on M 50 at the 1σlevel, but the 2σtail toward low M 50 persists. We project that observations of one (two) complete satellite populations can constrain warm DM models withmWDM≈ 10 keV (20 keV). Subhalo mass function (SHMF) suppression can be constrained to ≈70%, 60%, and 50% that in cold dark matter (CDM) at peak virial masses of 108, 109, and 1010M, respectively; SHMF enhancement constraints are weaker (≈20, 4, and 2 times that in CDM, respectively) due to galaxy–halo connection degeneracies. These results motivate searches for faint dwarf galaxies beyond the MW and indicate that ongoing missions like Euclid and upcoming facilities including the Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope will probe new galaxy formation and DM physics. 
    more » « less
  3. Abstract There is untapped cosmological information in galaxy redshift surveys in the nonlinear regime. In this work, we use theAemulussuite of cosmologicalN-body simulations to construct Gaussian process emulators of galaxy clustering statistics at small scales (0.1–50h−1Mpc) in order to constrain cosmological and galaxy bias parameters. In addition to standard statistics—the projected correlation functionwp(rp), the redshift-space monopole of the correlation functionξ0(s), and the quadrupoleξ2(s)—we emulate statistics that include information about the local environment, namely the underdensity probability functionPU(s) and the density-marked correlation functionM(s). This extends the model ofAemulusIII for redshift-space distortions by including new statistics sensitive to galaxy assembly bias. In recovery tests, we find that the beyond-standard statistics significantly increase the constraining power on cosmological parameters of interest: includingPU(s) andM(s) improves the precision of our constraints on Ωmby 27%,σ8by 19%, and the growth of structure parameter,fσ8, by 12% compared to standard statistics. We additionally find that scales below ∼6h−1Mpc contain as much information as larger scales. The density-sensitive statistics also contribute to constraining halo occupation distribution parameters and a flexible environment-dependent assembly bias model, which is important for extracting the small-scale cosmological information as well as understanding the galaxy–halo connection. This analysis demonstrates the potential of emulating beyond-standard clustering statistics at small scales to constrain the growth of structure as a test of cosmic acceleration. 
    more » « less
  4. Abstract We present the Cardinal mock galaxy catalogs, a new version of the Buzzard simulation that has been updated to support ongoing and future cosmological surveys, including the Dark Energy Survey (DES), DESI, and LSST. These catalogs are based on a one-quarter sky simulation populated with galaxies out to a redshift ofz= 2.35 to a depth ofmr= 27. Compared to the Buzzard mocks, the Cardinal mocks include an updated subhalo abundance matching model that considers orphan galaxies and includes mass-dependent scatter between galaxy luminosity and halo properties. This model can simultaneously fit galaxy clustering and group–galaxy cross-correlations measured in three different luminosity threshold samples. The Cardinal mocks also feature a new color assignment model that can simultaneously fit color-dependent galaxy clustering in three different luminosity bins. We have developed an algorithm that uses photometric data to further improve the color assignment model and have also developed a novel method to improve small-scale lensing below the ray-tracing resolution. These improvements enable the Cardinal mocks to accurately reproduce the abundance of galaxy clusters and the properties of lens galaxies in the DES data. As such, these simulations will be a valuable tool for future cosmological analyses based on large sky surveys. 
    more » « less
  5. Abstract We present theAemulusνsimulations: a suite of 150 (1.05 h-1Gpc)3N-body simulations with a mass resolution of 3.51 × 1010Ωcb/0.3  h-1Min awνCDM cosmological parameter space. The simulations have been explicitly designed to span a broad range inσ8to facilitate investigations of tension between large scale structure and cosmic microwave background cosmological probes. Neutrinos are treated as a second particle species to ensure accuracy to 0.5 eV, the maximum neutrino mass that we have simulated. By employing Zel'dovich control variates, we increase the effective volume of our simulations by factors of 10-105depending on the statistic in question. As a first application of these simulations, we build new hybrid effective field theory and matter power spectrum surrogate models, demonstrating that they achieve ≤ 1% accuracy fork≤ 1hMpc-1and 0 ≤z≤ 3, and ≤ 2% accuracy fork≤ 4hMpc-1for the matter power spectrum. We publicly release the trained surrogate models, and estimates of the surrogate model errors in the hope that they will be broadly applicable to a range of cosmological analyses for many years to come. 
    more » « less
  6. Abstract We analyze clustering measurements of BOSS galaxies using a simulation-based emulator of two-point statistics. We focus on the monopole and quadrupole of the redshift-space correlation function, and the projected correlation function, at scales of 0.1 ∼ 60h−1Mpc. Although our simulations are based onwCDM with general relativity (GR), we include a scaling parameter of the halo velocity field,γf, defined as the amplitude of the halo velocity field relative to the GR prediction. We divide the BOSS data into three redshift bins. After marginalizing over other cosmological parameters, galaxy bias parameters, and the velocity scaling parameter, we findfσ8(z= 0.25) = 0.413 ± 0.031,fσ8(z= 0.4) = 0.470 ± 0.026, andfσ8(z= 0.55) = 0.396 ± 0.022. Compared with Planck observations using a flat Lambda cold dark matter model, our results are lower by 1.9σ, 0.3σ, and 3.4σ, respectively. These results are consistent with other recent simulation-based results at nonlinear scales, including weak lensing measurements of BOSS LOWZ galaxies, two-point clustering of eBOSS LRGs, and an independent clustering analysis of BOSS LOWZ. All these results are generally consistent with a combination of γ f 1 / 2 σ 8 0.75 . We note, however, that the BOSS data is well fit assuming GR, i.e.,γf= 1. We cannot rule out an unknown systematic error in the galaxy bias model at nonlinear scales, but near-future data and modeling will enhance our understanding of the galaxy–halo connection, and provide a strong test of new physics beyond the standard model. 
    more » « less
  7. Abstract Constraining the distribution of small-scale structure in our universe allows us to probe alternatives to the cold dark matter paradigm. Strong gravitational lensing offers a unique window into small dark matter halos (<1010M) because these halos impart a gravitational lensing signal even if they do not host luminous galaxies. We create large data sets of strong lensing images with realistic low-mass halos, Hubble Space Telescope (HST) observational effects, and galaxy light from HST’s COSMOS field. Using a simulation-based inference pipeline, we train a neural posterior estimator of the subhalo mass function (SHMF) and place constraints on populations of lenses generated using a separate set of galaxy sources. We find that by combining our network with a hierarchical inference framework, we can both reliably infer the SHMF across a variety of configurations and scale efficiently to populations with hundreds of lenses. By conducting precise inference on large and complex simulated data sets, our method lays a foundation for extracting dark matter constraints from the next generation of wide-field optical imaging surveys. 
    more » « less
  8. Abstract Early-type galaxies (ETGs) possess total density profiles close to isothermal, which can lead to non-Gaussian line-of-sight velocity dispersion (LOSVD) under anisotropic stellar orbits. However, recent observations of local ETGs in the MASSIVE Survey reveal outer kinematic structures at 1.5Reff (effective radius) that are inconsistent with fixed isothermal density profiles; the authors proposed varying density profiles as an explanation. We aim to verify this conjecture and understand the influence of stellar assembly on these kinematic features through mock ETGs in IllustrisTNG. We create mock Integral-Field-Unit observations to extract projected stellar kinematic features for 207 ETGs with stellar mass M* ≥ 1011 M⊙ in TNG100-1. The mock observations reproduce the key outer (1.5Reff) kinematic structures in the MASSIVE ETGs, including the puzzling positive correlation between velocity dispersion profile outer slope γouter and the kurtosis h4’s gradient. We find that h4 is uncorrelated with stellar orbital anisotropy beyond Reff; instead we find that the variations in γouter and outer h4 (a good proxy for h4 gradient) are both driven by variations of the density profile at the outskirts across different ETGs. These findings corroborate the proposed conjecture and rule out velocity anisotropy as the origin of non-Gaussian outer kinematic structure in ETGs. We also find that the outer kurtosis and anisotropy correlate with different stellar assembly components, with the former related to minor mergers or flyby interactions while the latter is mainly driven by major mergers, suggesting distinct stellar assembly origins that decorrelates the two quantities. 
    more » « less
  9. Abstract The extent to which turbulence mixes gas in the face of recurrent infusions of fresh metals by supernovae (SN) could help provide important constraints on the local star formation conditions. This includes predictions of the metallicity dispersion among metal-poor stars, which suggests that the interstellar medium was not very well mixed at these early times. The purpose of this Letter is to help isolate, via a series of numerical experiments, some of the key processes that regulate turbulent mixing of SN elements in galactic disks. We study the gas interactions in small simulated patches of a galaxy disk with the goal of resolving the small-scale mixing effects of metals at parsec scales, which enables us to measure the turbulent diffusion coefficient in various galaxy environments. By investigating the statistics of variations of α elements in these simulations, we are able to derive constraints not only on the allowed range of intrinsic yield variations in SN explosions but also on the star formation history of the Milky Way. We argue that the observed dispersion of [Mg/Fe] in metal-poor halo stars is compatible with the star-forming conditions expected in dwarf satellites or in an early low-star-forming Milky Way progenitor. In particular, metal variations in stars that have not been phase-mixed can be used to infer the star-forming conditions of disrupted dwarf satellites. 
    more » « less